
Borchers: Current Topics SS06 1

Review



Borchers: Current Topics SS06 2

Part II:
The Power Of

Mathematical Notations



Borchers: Current Topics SS06 3

The Power Of
Mathematical Notations

 Text book for this part:
Harold Thimbleby (UCL Interaction Centre, London):
 “Press On”
 To be published, pre-print PDF version at

http://www.uclic.ucl.ac.uk/harold/book/index.html



Borchers: Current Topics SS06 4

Culture

 Computers are like the Winchester Mistery House
 Staircases leading nowhere
 Cupboards with nothing behind their door



Borchers: Current Topics SS06 5

Culture

 The Magic Machine
 Externalizing costs
 Software warranties
 Bad interaction design –> formalize!

 Book key point: Describe UI behavior mathematically
to improve usability in a predictable way



Borchers: Current Topics SS06 6

State machines (FSMs)
 Describe UIs (discrete systems) by states and actions

 user generates actions (pressing buttons…) which cause effects
 Mode

 in a given mode, an action has a unique effect
 a mode tells what a button will do (e.g., on/off button)

 State
 in the same state, the same actions have exactly the same effects
 a state tells what the system will do
 e.g., television state:

<on/off, channel, sound level, color, brightness…>
 Timeouts and synchronization problems in many systems!

 system resets after certain time, user cannot find a certain state



Borchers: Current Topics SS06 7

Drawing state machines
 Circles represent states
 Arrows represent actions
 Indicate default state with special arrow

 Example: torch
 2 states: on, off
 2 actions: switch on, switch off
 more detailed analysis reveals additional states / actions (e.g.,

dead bulb, no batteries, broken, replace bulb…)



Borchers: Current Topics SS06 8

 Number of states and actions depend on what we try
to achieve as UI analysts!

 Some states are unimportant to our needs

 Computer has too many states—clump them together

 Example: alarm clock has 4 million states
 How could users check?



Borchers: Current Topics SS06 9

Rules for drawing simple state
diagrams

 Every arrow starts and finishes at a state circle
 A state has as many arrows pointing from it as possible actions are

available
 Only one initial state exists
 Arrows can start and finish at the same state
 Terminal states have no outgoing arrows (error!)
 States without incoming arrows are never reached (error!)
 Strong connectivity: all states must be reached from all other states

following arrows



Borchers: Current Topics SS06 10

Statecharts
 Goal: Simplify drawings for complex state machines

 Example: Saving arrow to Off state from every state
 Here: Basic statecharts only

 More general statecharts in UML

 States can be collected into state clusters
 A state cluster represents

a mode for an action iff
we can draw an arrow for
that action from the cluster
 See also Raskin

On and Off state clusters of our torch

cluster



Borchers: Current Topics SS06 11

Multilevel Statecharts
 What is the default

state inside the On
cluster?
 Make On arrow

point to a state
inside On cluster

 Or mark default
state as usual

 State clusters can
contain state clusters
 Example: More

detailed On state
for our torch

Replace

Breaks



Borchers: Current Topics SS06 12

AND States

 Torch: Off state should be symmetrical to On state
 Bulb can be OK or broken
 Breaking and replacing it also does the same
 On and Off switches work independently of bulb health

 AND states can represent this "repetition"
 So far, state machines were always in exactly one state at a

time (coin analogy)
 State cluster divided by dotted line: actions on both sides of

the line can happen independently (two coins); saves arrows



Borchers: Current Topics SS06 13

Joint Connectors

 Entering several AND states
upon an action:

 Only allowing an action if
several AND states are active
(e.g., only allow bulb change
if broken and off):



Borchers: Current Topics SS06 14

History Entrances

 Example: TV set that remembers
channel while off

 When cluster is entered, go to the state
that cluster was in last (remember
cluster state)

 Variant of Default arrow,
marked with an "H"

 Imagine leaving coins in clusters
(maybe flipped over for "inactive")

 More general: Petri Nets



Borchers: Current Topics SS06 15

Deep History

 For nested clusters, need to specify
nested history

 Shortcut: H* marks Deep History
arrow that reaches all the way into
a nested cluster.

H*



Borchers: Current Topics SS06 16

Delays and Conditions

 Delays (almost always evil!):
 Trigger if nothing happened for

a while
 Or delay action for a while after

trigger
 Conditions:

 Action can only occur when
certain conditions hold true

 Can always be replaced with
explicit states, but sometimes
saves drawing lots of states

 Alarm clock example

wait 10s



 Incomplete
 Missing details for

volume /
brightness / color /
contrast selection

Example:
Sony TV

 8 channels
 Buttons:

 Standby
 Channel: +/–
 Volume: Δ+, Δ–
 Contrast/Color/

Brightness: ρ
 Pict. Adjust: ≡+, ≡–



Sony Remote

 What do you notice?
 Different from its TV

 More complex
 Why?

 Strange channel split
 Missing details

 Channels
 Clock



Borchers: Current Topics SS06 19

Undo
 What does Undo look like in a state chart?
 Back arrows with inverse action â
 Toggle switches are easier than single toggle buttons
 What do several switches on a device look like?
 Divided by dotted AND line
 Number of states drawn: m+n
 Number of states posible: m*n
 What does an UNDO button look like?
 Lots of new states and arrows
 Therefore, mark statechart as "undoable", then every arrow

implicitly has an undoable action (cross through exceptions)



Borchers: Current Topics SS06 20

Books on Statecharts

 Harel, Politi: Modeling Reactive Systems with
Statecharts (the definitive book)

 Horrocks: Constructing the User Interface with
Statecharts (more practical, programming-oriented)

 Fowler, Scott: UML Distilled (UML introduction)



Borchers: Current Topics SS06 21

Programming With States

 State may be represented by a variable
 Actions may be represented by functions

 function off() { state = 0 };
 The FSM can be represented as a matrix
 Example: Light bulb (off, dim, on) with 3 buttons:

0 1 2
0 1 2
0 1 2
When in state x and button y is pressed, go to

state (x,y)



Borchers: Current Topics SS06 22

Strong Connectivity

 What does the Farmer's
Problem (farmer, wolf,
cabbage) look like as an FSM?

 Hard because need to find route through FSM
 A strongly connected system is a system where the user

can get from any state to any other state
 The Farmer's Problem is not strongly connected

 Cannot go back when you made a mistake
 A strongly connected component is a subset of states in

a statechart that is strongly connected



Borchers: Current Topics SS06 23

Strong Connectivity

 Algorithms for finding them well known
 Important for usability
 Hard to find by users or empirical testing

 Designers' responsibility!
 Farmer's Problem has 12 strongly connected

components of various sizes (can you find them?)



The twelve strongly connected components arranged around a clock

e.g.,
only
farmer
and
wolf
left



 Same diagram, arranged in rows by distance from start state at
the top

 Useful: An optimal solution to the problem is one that only
goes down, never up or sideways in this graph
 Otherwise a shorter route would have been possible

 Graph shape also gives a feel for complexity of using device



Borchers: Current Topics SS06 26

Connectivity

 Problem hard because some states are one-way (not
the end state btw.)

 So: Remove these states to get an easier to solve
problem diagram

 Can be done automatically!
 For actual devices, this would remove states in which

the user could get stuck (good idea)


